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Abstract: In this work, the heat transfer coupling the heat conduction with the 
thermal radiation for two types of porous fibrous structures, including the randomly 
distributed fibrous media (RDFM) and directionally distributed fibrous media 
(DDFM), is theoretically and numerically investigated. The theoretical models and the 
Rossland approximation are respectively used to study the conductive thermal 
conductivity (CTC) and the radiative thermal conductivity (RTC) that implement with 
the aid of the Finite Volume Method (FVM) and Discrete Ordinate Method (DOM), 
respectively. The modeling results reveal that, for CTC of fibrous materials in the case 
of RDFM, the Random model and Hamilton model show the good agreements with 
the numerical method. Whereas, in the case of DDFM, the preceding models cannot 
predict the conductive thermal conductivity precisely. To overcome this issue, we 
propose a new model that take the fiber orientation, fiber length and thermal 
conductivity ratio of fiber and matrix phase into account. The proposed model enables 
to predict the conductive thermal conductivity precisely in DDFM. In addition, it is 
found that the CTC decreases exponentially with angle between the heat flux direction 
and fiber orientation. Since CTC is determined, the combined conductive and 
radiative thermal conductivity (CRTC) is calculated by theoretical model added with 
Rossland approximation as well as numerical method that is FVM combined with 
DOM. The results show that besides cases where material’s optical thick is very small, 
the CRTC calculated by two methods show good agreement with each other, 
indicating the validity that the two methods used in predicting the CRTC of fibrous 
media.  
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1. Introduction 

Porous fibrous materials with the excellent thermal properties have attracted 
ever-increasing attention for civil and military applications, especially in the area of 
heat transfer as thermal insulation materials. Regarding the heat transfer in porous 
fibrous materials, there exist three transfer modes, including conduction, convection 
and radiation. The convection, however, can be ignored due to the small pore size in 
the porous fibrous insulation materials. Therefore, the conduction and radiation 
become the predominant heat transfer modes that need to be detailedly studied. 

In studying the porous fibrous materials, past efforts have mainly focused on 
establishing models to achieve the effective thermal conductivity. Maxwell [1] firstly 
studied the effective thermal conductivity of composites with irregularly dispersed 
fillers in a continuous matrix. Using potential theory, the effective thermal 
conductivity of a system with spherical, non-interacting fillers in a continuous matrix 
was obtained by solving the Laplace equation. In order to take the effect of the shape 
of particles into account, Maxwell model was modified by Hamilton and Crosser [2]: 
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where n is the empirical shape factor. In the case of the infinite cylinder, n = 6; while 
in the case of the spherical particle, n = 3, and Hamilton and Crosser model is in 
agreement with Maxwell model. Hasselman and Johnson [3] considered the effect of 
interfacial thermal resistance and derived the effective thermal conductivity of 
circular cylinder oriented perpendicularly to heat flow according to the Maxwell 
theory. However, this model is valid only for dilute fiber volume fraction for which 
interactions between the temperature fields of neighboring dispersions is negligible.  

Among the above models, thermal conductivities of each phase and fiber volume 
fraction have been considered, whereas fiber orientation has not been taken into 
account. These types of models can be used to calculate the effective thermal 
conductivity of disordered fibrous material. Some other models have also been 
proposed for disordered fibrous medium. Zhang et al. [4] and Daryabeigi [5] utilized 
the parallel model to predict the effective thermal conductivity. Daryabeigi [6] also 
proposed a combined model as follows:  
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where A and 1-A are the fractions of heat transfer in parallel and series mode, 
respectively. Wang and Pan [7] proposed several kinds of models for predicting the 
effective thermal conductivity of complex multiphase materials in their review article. 
Liu [8] systematically reviewed the models that are used for calculating effective 
thermal conductivity of porous media in his doctoral thesis. According to their 
descriptions, several models can be used to predict the effective thermal conductivity 
of fibrous media with disordered fibers, such as the Hamilton model and random 

 



 

model.  
While for fibrous media with specific orientation, some effort has also been 

made to show the relationship between thermal properties and the fiber orientation. 
Jagjiwanram and Singh [9] proposed a combined model based on the Parallel model 
and Series model which take the angle contained by fiber axis direction and heat flux 
into account. Pitchumani and Yao [10] presented a unified treatment using the tool of 
local fractal dimensions to reduce the geometric complexity of the relative fiber 
arrangement in the composite. A generalized unit cell is constructed based on the fiber 
volume fraction and local fractal dimensions along directions parallel and transverse 
to the heat flow direction. The thermal model resulting from a simplified analysis of 
this unit cell is shown to be very effective in predicting the conductivities of 
composites with both ordered as well as disordered arrangement of fibers.  

Zhou et al. [11] proposed a concept of heat transfer passages, and used it to 
evaluate the high filler leading composite materials in which the effects of filler 
orientation and distribution on the effective thermal conductivity can be considered. 
However, their model supposes that heat is transferred in parallel approximately in 
composite materials and filler volume fraction is high, which limits its use for 
effective thermal conductivity.  

Fu and Mai [12] studied the thermal conductivity of short-fiber-reinforced 
polymer composites by taking the effect of fiber orientation distribution and length 
distribution into account. The results showed that the thermal conductivity increases 
with mean fiber length (or mean aspect ratio) but decreases with mean fiber 
orientation angle with respect to the measured direction. Zou et al. [13] analytically 
derived expression for transverse thermal conductivity of unidirectional fiber 
composites with thermal barrier based on the electrical analogy technique and on the 
cylindrical filament-square packing array unit cell model (C-S model). Their 
theoretical predictions with or without thermal barrier are found to be in excellent 
agreement with the existing analytical model and experimental data. Koráb et al. [14] 
experimentally measured thermal conductivity in two main orientations to the fiber 
direction by the laser-flash technique. Measurements revealed decreasing thermal 
conductivity as the fiber volume content in the composite increased due to the low 
thermal conductivity of fiber compared with the copper matrix, and the transverse 
thermal conductivity of the unidirectional samples presented much lower values in 
comparison to the longitudinal one. Wang et al. [15] used Lattice Boltzmann method 
to numerically investigate the ETC fibrous media. In their study, a random 
generation-growth method for generating micro morphology of natural fibrous 
materials is proposed and a highly efficient lattice Boltzmann algorithm for solving 
the energy transport equations is utilized. The simulation results indicate that the 
effective thermal conductivity of fibrous material increases with the fiber length and 
approach a stable value when the fiber tends to be infinite long.  

The above articles considered only the heat conduction in fibrous media. In 
general, these previous studies mostly used some inexact models to predict the 
effective thermal conductivity of fibrous material [4-6, 9], or applied regular structure 
and unit cell model to study the effective thermal conductivity [10, 13], or focused on 

 



 

thermal conductivity either in direction that longitudinal or transverse by using single 
fiber model (unidirectional fiber composites) to analyze the heat transfer of fibrous 
media, few have thoroughly show the effect of fiber orientation as well as fiber length 
on thermal conductivity. It is also confusing that in such lots of models that provided 
in previous studies, which model should be used for for predicting effective thermal 
conductivity of fibrous media in practical application. So one aim of this study is to 
show how fiber orientation influences its effective thermal conductivity and to 
ascertain effective thermal conductivity prediction models for randomly distributed 
fibrous media (RDFM) and directionally distributed fibrous media (DDFM).  

While fibrous media used as insulation material under high-temperature 
environment, radiative heat transfer becomes significant and should be investigated 
combined with heat conduction. Many researchers have studied combined radiative 
and conductive heat transfer in fibrous material experimentally and analytically. Tong 
et al. [16, 17] studied the radiative heat transfer in a grey medium made up by fibers 
distributed randomly in space by using the two-flux approximation model and 
obtained good agreement between the experimental and theoretical model results. 
Jeandel et al. [18] also used two-flux model to study the radiative heat transfer 
problems in glass fiber mediums. Lee [19, 20] considered the effect of fiber 
orientation on radiative heat transfer based on the classical Mie theory, and solved 
radiative properties of three pattern orientation fiber media. Zhang et al. [4] and 
Daryabeigi [5] investigated the high temperature characteristics of fibrous insulating 
materials numerically and experimentally. Baillis et al. [21, 22] used Rossland 
equation to account for the radiative heat transfer through foam porous material. 
Considering the effect of anisotropy, they used a size factor to modify the original 
radiative properties. Placido et al. [23] developed a geometrical cell model for 
applying to the prediction of radiative and conductive foam insulation properties. The 
gas and solid conductivities were determined by empirical model while the radiative 
conductivity was determined by Rossland equation. Zhao et al. [24] applied a similar 
method as Placido et al. [23] to study the heat transfer problems through fibrous 
insulating materials. In these studies, two flux approximation and Rossland 
approximation were used to account for the radiative heat transfer in fibrous media. 
Two flux approximation is the simplest multi-flux approximation which is derived 
under the assumptions that the energy transfer is one-dimensional and the intensity is 
isotropic for all radiation with components in the positive coordinate direction and in 
the negative direction with a different value. While Rossland approximation requires 
that the media is optically dense media and radiation travels only a short distance 
before being scattered or absorbed. For this situation, it is possible to transform the 
integral relation for the radiative energy into a diffusion relation like that for heat 
conduction.  

Discrete ordinate method (DOM) is a commonly used method that can be applied 
to account for the radiative heat transfer [25] in insulation materials. It discretes the 
general radiation transfer relations into a set of equations for an intensity that is 
angularly averaged over each of a finite number of ordinate directions. Then these 
discretized radiation transfer equation are solved numerically. DOM was first 

 



 

proposed by Chandrasekhar [26], and then Lathrp [27] applied this method to solve 
the neutron transport problems. Truelove [28, 29] and Fiveland [30-32] did a lot of on 
the application of DOM in radiative heat transfer. Fiveland [30] and Kim and Baek 
[33] investigated the combined radiative and conductive heat transfer in two 
dimensional square rectangular enclosure by using DOM as well as finite volume 
method (FVM). Sakami et al. [34] extended the method into two dimensional 
complex geometry which also take combined conductive and radiative heat transfer 
into account. Liu and Tan [35] numerically analyzed the transient coupled 
radiative-conductive heat transfer process in a two-dimensional semitransparent 
cylinder caused by a pulse irradiation at one end of the cylinder. While Lacroix et al. 
[36] and David et al. [37] considered the coupled radiative-conductive heat transfer in 
non-grey medium. Due to the convenience of dealing with incoming scattering 
intensity and combining with other governing equation, DOM is considered to be a 
promising method in radiative heat transfer problems.  

DOM has no limitations such as one-dimensional, isotropic as well as optically 
thick which two-flux approximation and Rossland approximation have, and it also 
works in low computational power as compared with other numerical methods such as 
Zone method and Monte Carlo simulation. Owing to the preceding mentioned merits, 
in this work, DOM is used to investigate the radiative heat transfer in fibrous media. 
At the same time, Rossland approximation is also used as comparison with DOM. 
Based on the DOM and Rossland approximation, the theoretically and numerically 
investigations on the coupled conductive and radiative heat transfer in fibrous media 
were conducted, and the overall effective thermal conductivity for both RDFM and 
DDFM was achieved.  

2. Theoretical thermal conductivity models for fibrous media 

Table 1 Parallel model and Series model of effective thermal conductivity 

Parallel model 
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In fibrous media, fibers always distribute randomly or distribute directionally. 
For directionally distributed fibers, the most two famous models are Parallel model 
and Series model. Assuming heat flow is in the vertical direction, fiber's and matrix's 
thermal conductivity are λf and λm, fiber's volume fraction is φ, then these two models 
can be expressed as Table 1 shows. Parallel model and Series model give the 
maximum and minimum limits of effective thermal conductivity for two-phase media. 

 



 

While for fibrous media with other orientation, for example, Fig. 1 shows a structure 
in which the fiber orientation and heat flow direction contains an angle of θ, for this 
kind of fibrous media, few models has been proposed to account for the fiber 
orientation's impact on thermal conductivity.  

 
Fig. 1 Structure of fibrous media with a specified orientation 
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Jagjiwanram and Singh [9] assumed that continuous and dispersed phases were 
in the form of parallel slabs and make an angle θ' with the direction of heat flux. They 
resolved effective thermal conductivity into two components, one parallel to the heat 
flux and the other perpendicular to it, and then they gave a model that combined the 
two basic models for effective thermal conductivity as Eq.(1) shows. 
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Similar to Eq.(1), a model can also be developed as Eq.(2). In this study, Eq.(1) 
is called Model One, and Eq.(2) is called Model Two. 

In most cases, fibers are distributed randomly in matrix material, which means 
that fibers had same weight in each direction. For this kind of RDFM, several models 
for two-phase effective thermal conductivity have been developed, such as Hamilton 
model and Random model. Hamilton model can be expressed as Eq.(3).  
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where α=λf/λm is the ratio of fiber thermal conductivity and matrix thermal 
conductivity; φ is the volume fraction of fibers; n is the empirical shape factor. In the 
case of the spherical particle, n = 3 and in the case of the infinite cylinder, n = 6.  

Random model is written as 
1

e f m
φ φλ λ λ −=         (4) 

Effective thermal conductivity models for DDFM and RDFM will be used and 
compared with results that are numerically calculated. According to the results, some 
models will be modified and some models will be ascertained for both DDFM and 
RDFM.  

In order to take radiative heat transfer into account, Rossland equation is used to 
calculate the radiative thermal conductivity (RTC) of fibrous media. Rossland 

 



 

equation is a simplified model of Radiative Transfer Equation (RTE). When material 
has a great extinction coefficient, it can be treated as optically thick, then RTE is 
simplified similar to Fourier law, which is called Rossland approximation. Using 
Rossland approximation, RTC can be easily calculated and fortunately most 
insulation materials meet the optical thick condition; so it is used extensively when 
calculating the RTC of composite insulation materials [21, 23, 38-40].  

According to Rossland equation, RTC can be calculated by the following 
equation,  

2 2 3
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where σ is the Boltzmann constant, n is the ambient medium's refractive index, T 
is the material's mean temperature, and σeR is Rossland extinction coefficient. σeR is 
related to the spectral extinction coefficient of the material, and their relationship is 
defined as 
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σeλ is the spectral extinction coefficient of fibrous media, ebλ and eb are spectral 
hemispherical emissive power and hemispherical emissive power. σeλ should include 
both the matrix media and fibers' extinction coefficients, and can be calculated briefly 
by 

e e ,m eλ λ λσ σ σ= +         (7) 

In Eq.(7), σeλ,m and σeλ,f  are the spectral extinction coefficient of matrix and 
fibers. 

As Rossland approximation gives an expression of RTC and theoretical models 
stated above give conductive thermal conductivity (CTC), a simplified model for 
combined conductive and radiative thermal conductivity (CRTC) is considered to add 
the CTC and RTC directly. This approximation assumes that the interaction between 
the two modes transfer processes is very weak. For this combination, the energy 
transfer is similar to heat conduction with a thermal conductivity that depends on 
temperature. 
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3. Governing equations and numerical methods 

3.1 Structure 
Besides theoretical study, numerical method will also be applied on the study of 

heat transfer performance of fibrous media, thus the computational structure of 
fibrous media should be firstly constructed. Wang et al. [15] used a random 
generation-growth method for generating micro morphology of natural fibrous 
materials based on existing statistical macroscopic geometrical characteristics. In this 

 



 

paper, we used similar method to generate the structure of fibrous media that meet 
several specific conditions including fiber volume fraction, fiber orientation and fiber 
length.  

First, a 200*200 squared grid system is formulated in which a pixel represents a 
fiber point or a matrix medium point. In this study we use "1" represents the fiber and 
"0" represents the matrix.  

Second, parameters of fiber such as its diameter (D), length (L), centric 
coordinate (x, y) and orientation (θ ) should be specified. These parameters could all 
be determined by a Random Number Based Method (RNBM). For example, for a 2 
dimensional problem, assuming that fibers are located in the matrix uniformly with 
angles between θmin and θmax, where angle is the angle contained by fiber longitudinal 
direction and the heat flux direction, θmin and θmax are the minimum and maximum 
value that angle can be got respectively. The fiber orientation can be fixed as follows,  

max min min( )Rθθ θ θ θ= − +        (9) 

In Eq.(9), Rθ represents the orientation random number. Similar to fiber 
orientation determination, the fiber centric coordinate can also be determined 
randomly according to Eq.(10), (11) respectively. 

max min min( )xx R x x x= − +        (10) 

max min min( )yy R y y y= − +        (11) 

For simplicity, fiber diameter and length are both constant in our study, which 
are 0.005 and 0.4 compared with the width 1.0 of the system respectively.  

When a fiber's orientation and centric coordinate as well as its length and 
diameter are fixed, this fiber could be specified. In numerical method, this can be 
realized by looping all the pixels to judge whether dpL, the distance between a point 
and the line that be specified by fiber's orientation and centric coordinate is lower than 
D/2. In order to guarantee the fiber length not exceed L, the distance of the point and 
the centroid of fiber dpC, should also be calculated and compared to L/2. 
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If dpL<D/2 and dpC<L/2, then it is a fiber point and mark it as "1", otherwise it is 
a matrix point and remains its mark as "0". The line specified by fiber is described as 
Eq.(12), and then dpL and dpC can be calculated by Eq.(13), (14).  

Every time a pixel mark changed to "1", the total fiber volume fraction is 
calculated. If the volume fraction reaches the predefined value, then terminate the 
program and export the structure, otherwise keep on judging. While a fiber is 
generated completely, a new fiber is generated following the same procedure as stated 

 



 

above until the volume fraction meets the predefined value. 
Following the method described above, some examples of fibrous structures are 

generated and shown in Fig. 2 and Fig. 3. During structure generating, fiber diameter 
and fiber length are keep constant with values 0.005 and 0.4 respectively. It is shown 
that the generated structures show completely random similar to the real fibrous 
medium, reflecting the effectiveness of the method to be used to regenerate structure 
of fibrous material.  

  
(a) φ=8% (b) φ=10% 

Fig. 2 Random distributed fibrous media (RDFM) generated with different fiber volume fraction, 
D=0.005, L=0.4 

   
(a) θ=15° (b) φ=θ=45° (b) φ=θ=90° 

Fig. 3 Directionally distributed fibrous media (DDFM) generated with different fiber orientation, 
D=0.005, L=0.4, V=0.04 

3.2 Governing equations 

 
Fig. 4 Schematic of the two dimensional coordinate system 

For a two dimensional steady heat transfer problem which combined conduction 
and radiation without internal heat sources, the energy equation is written as 
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where λ is the thermal conductivity, T is temperature,  is the divergence of 

radiative heat flux. Subscripts i denotes matrix phase and dispersed phase in 
multiphase media when it is m, d respectively. 
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Energy equation can be discretized by using FVM,  
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The temperature gradients on grid interface are calculated by central difference 

and the thermal conductivities on grid interface are calculated by harmonic average, 
then Eq.(16) can be rearranged to: 
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In Eq.(17), the divergence of radiative heat flux  must be first got to 

calculate the temperature field, it can be expressed as [25],  
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where I(r, Ω) denotes the radiation intensity, which is a function of position r 
and direction Ω. Radiation intensity is determined by solving the RTE,  
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where µ, ξ is the direction cosine of Ω, β, α, σ are extinction, absorption and 
scattering coefficient respectively, Φ is the scattering phase function. The left-hand 
side terms represent the gradient of the intensity in the specified direction, and the 
right-hand side terms represent the attenuation of intensity by extinction (absorption 
and scattering), the augmentation of intensity by emitting and the augmentation of 
intensity by incoming scattering.  

Standard RTE is an integro-differential equation, which is difficult to be solved 
analytically. DOM discretizes the whole space into a finite number of ordinate 
directions, and uses a set of angular averaged intensity equations over those directions 
to represent RTE. The integral over incident angular directions is approximated by a 
weighted sum of the angular quantities, and then the equation of intensity transfer in 
the m direction is written as 
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In equations, m and l denote outgoing and incoming directions, respectively. 
Integrating Eq.(20) over the control volume of dx·dy gives 
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Subscripts e,w,n,s denote the intensity on interface and E,W,N,S,P denote the 
intensity on node. ∆V is the control volume. Assuming intensity on interface and node 
has the relationship as follows: 
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fx and fy are weighting factors. Substituting Eq.(22) into Eq.(21) gives 
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In Eq.(23), ,
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Eq. (23) has been written for a direction with positive direction cosine, which is 
an intensity moving forward and to the right, entering through AS and AW faces and 
exits through AN and AE. It should be solved forwardly. In this study, weighting factors 
use a value of 0.5 which yield the “diamond difference” relations and boundary 
conditions of four faces are all diffuse-black which are as follows,  
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where εw is the wall emissivity and nw is the normal vector of boundary. 
The discrete form of boundary condition (Eq.(25)) is also given, 
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DOM is used to calculate the radiation intensity to get the divergence of radiative 
heat flux, then substituting the divergence of radiative heat flux into Eq. (17) to 
recalculate the temperature field. The new temperature will be used to recalculate the 
radiation intensity again. This iterative process should be continued until the 
temperature field and radiation intensity field both get convergent.  

When convergent temperature field and radiation intensity field is got, heat flux 
in Y direction at each node is calculated by,  
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where the right hand terms are conduction heat flux and radiation heat flux 
respectively. Total heat flux in Y direction is as follows,  
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where L1 is the node number in X direction. Then effective thermal conductivity 
accounting for both heat conduction and thermal radiation is calculated according to 
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XL and ∆T are thickness and temperature difference between the top and bottom 

 



 

face. 

3.3 Validation 

 
Fig. 5 Schematic of the coordinate system in the rectangular enclosure 

As validation study, we consider coupled conduction and radiation heat transfer 
in a 2-D rectangular enclosure in which a nonscattering medium is included (Fig. 5). 
The problem has been numerically studied by Kim [33]. Boundary temperature is as 
follows: T1=300 K, T2= T3= T4=150 K, and all of the boundary walls are black with 
emissivities equal 1.0. The length and width of enclosure is 1.0, and extinction 
coefficient of medium is 1.0. Thermal conductivity equals 8.3916 (W/m·K) and 
0.83916 (W/m·K) which correspond to the conduction-radiation parameter 
N=βλ/(4σT1

3) equals 1 and 0.1 respectively.  
Fig. 6 and Fig. 7 give comparison of dimensionless temperature and total heat 

flux between the present study and Kim’s. It is seen from both figures that the 
temperature and heat flux agree well with that reported in the literature.  
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Fig. 6 Dimensionless temperature along the symmetry line Y=0.5 for two thermal conductivities 
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Fig. 7 Dimensionless total heat flux along the symmetry line Y=0.5 for two thermal conductivities 

4. Parameter identification 

After the model has been developed, thermal properties should be identified to 
study the heat transfer. This includes the temperature-dependent thermal 
conductivities of fiber and matrix media as well as the material’s radiative properties, 
such as each phase’s spectral extinction coefficient and scattering albedo of the media.  

In this paper, we will take a kind of insulation material as illustration. Fiber is 
assumed to be silica fibers, and matrix material is selected as silica aerogel. Their 
thermal conductivities are all determined from reference [41] and listed in Table 2. 

Table 2 Temperature-dependent thermal conductivities of fiber and silica aerogel 

Temperature λf λm Temperature λf λm

K W/m·K W/m·K K W/m·K W/m·K 
300 1.38 0.0127 900 2.47 0.0228 
400 1.51 0.0139 1000 2.88 0.0264 
500 1.63 0.0150 1100 3.41 0.0309 
600 1.76 0.0161 1200 4.08 0.0368 
700 1.94 0.0177 1300 4.92 0.0444 
800 2.17 0.0200 1400 5.94 0.0571 

Considering the radiative properties, we will use datum given in reference [42] to 
be the spectral extinction coefficient of silica aerogel σeλ,gel,, and apply Mie theory to 
calculate the spectral extinction coefficient of fibers σeλ,f. 

In fibrous materials, fiber could be seemed as infinite cylinder when the ratio of 
its length and diameter is very large, thus Mie theory could be applied to get the 
radiative properties of fiber. According to Mie theory, scattering and extinction factor 
of an infinite cylinder can be calculated by the following equations [43]:  
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Re denotes the real part of a complex number, r is the particle radius, χ is the size 
factor and is defined as πD/λ, where D=2r is the particle diameter, Qsλ and Qeλ are 
the spectral scattering and extinction factor. anI, bnI, anII, bnII are Mie coefficients and 
they are functions of fiber's complex refractive index (n-ki). Their detailed 
expressions can refer to reference [43]. In this study, the complex refractive indexes 

 



 

needed for calculating the scattering and extinction factors are selected from 
reference [44].  

Once single fiber radiative properties and its size and orientation distributing 
functions are fixed, total radiative properties of fibers can be calculated by 
integrating each fiber's. Cunnington and Lee [45] proposed Eq.(30) to calculate the 
total scattering, absorbing and extinction coefficients of fibers related with single 
fiber's scattering, absorption and extinction factors. 
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In the above equation, d2F and N(r(Rf)) are the orientation distribution and 
number size distribution; the limits of integration (ξf1, ξf2, ωf1, ωf2) denote the range of 
angular orientation of the fibers.  

If fibers are randomly oriented in space, the radiation coefficients will be 
independent of angle and can be calculated as follows [44], 
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If all the fibers are oriented in a specified orientation and with the same radius, 
then Eq. (30) becomes 
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5. Results and discussion 

The preceding sections show the theoretical model and numerical method for 
calaulating the effective thermal conductivity of fibrous media. In this section, 
effective thermal conductivity of fibrous media which accounts for heat conduction 
only (CTC) or for combined conductive and radiative heat transfer (CRTC) are both 
considered. Theoretical and numerical methods are used and results calculated by two 
methods are compared to each other.  

5.1 Conductive thermal conductivity (CTC) 
5.1.1 Directionally distributed fibrous media(DDFM) 
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(a) V=2% (b) V=8% 

Fig. 8 Comparison of effective thermal conductivity between numerical results and several theoretical 
results 

Fig. 8 gives comparison of effective thermal conductivity between the numerical 
calculating results and several theoretical results. Fiber volume fractions are 2% and 
8% respectively, while other parameters are selected as Table 3 shows. Because of the 
independence with angle contained by fiber axis and heat flux, the results that 
calculated by Parallel model and Series model exhibit horizontal lines which do not 
change with angle. Model One and Model Two indicate that effective thermal 
conductivity decreases with angle. This is generally true, but it is found that both the 
variation trend and the exactly predicted value do not agree with numerical result. 
Besides fiber orientation, fiber length and thermal conductivity ratio of fiber and 
matrix could also influence the effective thermal conductivity, so it is necessary to 
develop a model that takes these factors into account.  

Table 3 Thermal conductivities and structure parameters used for Fig. 8 

Parameter Value Parameter Value 
λf 1.762717 D 0.005 
λm 0.016105 L 0.4 

According to the numerical results, effective thermal conductivity looks like 
decreasing with the angle exponentially. So first order exponentially decay model is 
used as the base model to be fitted. Meanwhile, fitted model should also satisfy the 
following conditions that as angle equals 90 degree, effective thermal conductivity 
equals to the value that calculated by Series model. Based on the reasons that stated 
above, following model is proposed,  

eff f parallel series f m f m series( , / , )*( )*exp( / ( , / , )) ( , / , )mA L B L C Lλ φ λ λ λ λ θ φ λ λ φ λ λ λ= − − +

                  (33) 
In order to determine parameters A, B and C, several cases are executed, and it 

seems that parameter C is approximately unit and independent with other contributing 
factors. While parameter B is related to the thermal conductivity ratio of fiber and 
matrix. Parameter A can be affected both by fiber length and thermal conductivity 
ratio. Based on large amount calculation, the modified model is finally determined as 
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8.17 120.13/ 115.
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/
s

32
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                  (34) 
In Eq.(34), α denotes the thermal conductivity ratio of fiber phase and matrix 

phase, L is the fiber length which is a relative ratio compared with material size, θ is 
the angle that contained by fiber axis and heat flux direction. λparallel and λseries are 
effective thermal conductivity that calculated by Parallel model and Series model 
respectively.  

While the modified model is established, several cases with different physical 
properties and structure parameters are investigated. The results are compared with 

 



 

the modified model and traditional models as Fig. 9 ~ Fig. 12 show. It is obviously 
that modified model agree well with all of the different cases which indicate that 
modified model can be effectively used to predict the effective thermal conductivity 
of fibrous media. 
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(a) T=300 K (b) T=1400 K 

Fig. 9 Variation of effective thermal conductivity with angle under different temperature, φ=2%, L=0.4, 
D=0.005 (a) λm=0.0127, λf= 1.37938 (b) λm=0.05705797, λf=5.939028 
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(a) φ=2% (b) φ =8% 

Fig. 10 Variation of effective thermal conductivity with angle under different fiber volume fraction, 
L=0.4, D=0.005, λm=0.01610507, λf=1.762717 (a) φ=2% (b) φ =8% 
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(a) L=0.4 (b) L=0.6 

Fig. 11 Variation of effective thermal conductivity with angle under different fiber length, φ=4%, 

 



 

D=0.005, λm=0.01610507, λf=1.762717 (a) L=0.4 (b) L=0.6 
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(a) α=0.01 (b) α=0.05 

Fig. 12 Variation of effective thermal conductivity with angle under different thermal conductivity ratio, 
φ=2%, L=0.4, D=0.005 (a) α=0.01 (b) L=α=0.05 

5.1.2 Random distributed fibrous media (RDFM) 

For fibrous media which has randomly distributed fibers, we have also 
numerically computed their effective thermal conductivity and compared with 
theoretical models that usually be used. The results are shown in Fig. 13. It can be 
seen from the figure that numerical results agreed well with Random model and 
Hamilton model, which indicates the effectiveness of these two models for predicting 
fibrous media’s effective thermal conductivity.  

0 2 4 6 8 10
0.012

0.014

0.016

0.018

0.020

0.022

Ef
fe

ct
iv

e 
Th

er
m

al
 C

on
du

ct
iv

ity
(W

m
-1

K
-1
)

Fiber Volume Fraction(%)

 Randon model
 Hamilton model
 Numerical Results

 
0 2 4 6 8 10

0.014

0.016

0.018

0.020

0.022

0.024

0.026

Ef
fe

ct
iv

e 
Th

er
m

al
 C

on
du

ct
iv

ity
(W

m
-1

K
-1
)

Fiber Volume Fraction(%)

 Randon model
 Hamilton model
 Numerical Results

 
(a) λm=0.0127, λf=1.38, L=0.4, D=0.005 (b) λm=0.0149, λf=1.63, L=0.4, D=0.005 

Fig. 13 Comparison of numerical results and theoretical models for randomly distributed fibrous media 

 



 

5.2 Combined conductive and radiative thermal conductivity 
(CRTC) 
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Fig. 14 Complex refractive index of silica 

fiber 
Fig. 15 Spectral extinction factor with 

different angle and randomly distributed, calculated 
according to Mie theory 

Insulation material always works in high temperature environment. This makes 
thermal radiation in participating media becomes significantly, leading to a high 
increase of heat transfer. In order to investigate the radiation heat transfer, spectral 
extinction coefficients of fibers and silica aerogel should be got firstly. Silica aerogel’s 
spectral extinction coefficient was selected from reference [42], and fiber’s was 
calculated according to Mie theory. Fig. 14 gives the complex refractive index of 
silica fiber and Fig. 15 shows the spectral extinction factors for fibers with different 
angle contained between fiber axis and heat flux direction as well as randomly 
distributed fibers. The fibers were assumed to be infinite cylinders and with 8µm 
diameter. The spectral extinction factors shown in Fig. 15 will be used as the base in 
the coming sections when calculating the spectral extinction coefficient and radiative 
conductivity.  

5.2.1 CRTC with different fiber volume fraction 
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Fig. 16 Rossland extinction coefficients with different fiber volume fraction at different temperature 

For RDFM, the relationship between spectral extinction factors and spectral 
extinction coefficient are as Eq.(31) shows. Under different fiber volume fraction, the 

 



 

spectral extinction coefficients and absorption coefficients were calculated, and then 
Rossland average were made on spectral extinction coefficients for different 
temperature. This gives the Rossland mean extinction coefficients as Fig. 16 shows.  
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(a) 300 K (b) 500 K 
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(c) 700 K (d) 900 K 
Fig. 17 Comparison of numerical results and theoretical results of CRTC of fibrous media with 

different volume fraction 
Fig. 17 shows variation of RTC, CTC and total conductivity (CRTC) of 

composite fibrous media with different fiber volume fraction, (a) (b) (c) (e) 
correspond to situations with 8µm fibers at 300 K, 500 K, 700 K and 900 K 
respectively. The volume fraction changed between 0~10% and fibers were assumed 
to be distributed randomly in the space. 

As shown in Fig. 17, when temperature is low, radiative heat transfer is very 
small and heat conduction is the main heat transfer mode. While the temperature 
increases, radiation increases obviously and becomes the main heat transfer mode. 
The figures also shown that as fiber volume fraction increased, RTC decreased greatly 
which meant that radiative heat transfer is restrained well by the fibers.  

 



 

5.2.2 CRTC with different fiber orientation 
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Fig. 18 Rossland extinction coefficients with different angle at different temperature 
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(a) 300 K (b) 500 K 

Fig. 19 Comparison of numerical results and theoretical results of CRTC of fibrous media with 
different angle 

For fibrous media with specified orientation, its spectral extinction coefficient 
was calculated according to Eq.(32). Fig. 18 shows the Rossland extinction coefficient 
of silica aerogel composite with directionally distributed fibers under different 
temperature. Fig. 19 gives the comparison of thermal conductivities that were 
calculated by numerical method and theoretical method. It can be seen that CTC 
decreases with the angle, while RTC decreases with the angle firstly and then 
increases slightly when angle approaches to 90°. Numerical results and theoretical 
results agreed well with each other except the situation that angle is around 0°. This is 
because that as the angle close to 0°, extinction coefficient of silica aerogel composite 
with fiber gets very small (see Fig. 18), which makes Rossland approximation invalid 
for RTC. And the CRTC calculated based on Rossland approximation deviates greatly 
with the results that calculated by numerical method. Fig. 19 shows that fiber 
orientation influences greatly both on heat conduction and thermal radiation, this 
should be considered while the optimization of insulating performance of fibrous 
media. 

 



 

6. Conclusion 

In this work, the theoretically and numerically investigation of the radiation and 
conduction heat transfer in porous fibrous material were conducted. For theoretical 
study, several models and Rossland approximation were used to calculate the effective 
thermal conductivity of two types of fibrous materials. And for numerical 
computation, the FVM coupling the DOM was used to study the conductive and 
radiative heat transfer. Mie theory was employed to obtain the radiative properties 
which are needed for radiative heat transfer, and a kind of structure generation method 
was applied to simulate fibrous media structure which is used for numerical study. 
With the coupled modeling, the mainly conclusions were drawn as below:  

1. The results calculated by Random model and Hamilton model for CTC of 
randomly distributed fibrous media agreed well with the results that calculated by 
numerical method, indicating that these two models can work well for predicting 
RDFM’s effective thermal conductivity. 

2. CTC of DDFM decays exponentially with angle between the heat flux 
direction and fiber orientation. This cannot be reflected by the existing models. A 
modified model is proposed for DDFM which shows accurate predicting ability for 
conductive thermal conductivity.  

3. For isotropic media, besides cases where material’s optical thick is very small, 
the effective thermal conductivity values that predicted by theoretical models 
combined with Rossland approximation and numerical method which is FVM 
combined with DOM can agree well with each other. For materials with small optical 
thick, Rossland approximation is invalid and the predicted value is far away from the 
numerical results.  
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