УДК 532.525.6

ТЕПЛООБМЕН В ТУРБУЛЕНТНОМ ПОГРАНИЧНОМ СЛОЕ ПРИ НАЛИЧИИ ПОЛОЖИТЕЛЬНОГО ГРАДИЕНТА ДАВЛЕНИЯ

Э.Я. Эпик

Национальный технический университет Украины «Киевский политехнический институт»

Представлены результаты экспериментального исследования локального теплообмена в турбулентном пограничном слое, развивающемся на плоской пластине при наличии продольного положительного градиента давления (P=-0,78) и повышенной турбулентности внешнего потока (*Tu*=12-6%). Установлена интенсификация теплообмена под воздействием каждого из двух указанных факторов. Для раздельной оценки их влияния на теплообмен предложены соответствующие уравнения подобия. Подтвержден нелинейный характер взаимодействия возмущающих эффектов различной природы.

1. Введение

В виду широкого распространения в различных технических приложениях (течения в каналах с переменным сечением, в проточной части турбомашин и компактных теплообменников, за препятствиями, отрывами и т.п.), исследования процессов переноса при наличии продольных градиентов давления привлекают внимание теоретиков и практиков. Как правило, такие процессы протекают при повышенной степени турбулентности. Поэтому на развитие пограничных слоев (ПС) оказывают воздействие оба указанных выше фактора.

Для оценки влияния повышенной степени турбулентности (Tu>0) на локальный теплообмен в турбулентном ПС в случае отсутствия градиента давления (dP/dx=0) при $\operatorname{Re}_x = const\,$ в [1] была рекомендована эмпирическая зависимость, подтвержденная в более поздних исследованиях [2]:

$$St_{0T} / St_{00} = (1 + 3Tu - 6Tu^2), \qquad (1)$$

где $St_{00} = 0.03 \operatorname{Re}_{x}^{-0.2} \operatorname{Pr}^{-0.4}$ - безразмерный коэффициент теплоотдачи в «стандартном» турбулентном ПС при dP/dx=0 и Tu=0 [3], St_{0T} - число Стэнтона при dP/dx=0 и Tu>0, St_{0T}/St_{00} - интенсификация теплообмена за счет влияния внешней турбулентности при dP/dx=0. Нетрудно убедиться, что в воздушной среде (Pr=0.71)

$$St_{00} = 0.0344 \,\mathrm{Re}_x^{-0.2}$$
 (2)

В то же время вопрос о влиянии градиента давления на интенсивность теплообмена в ТПС до сих пор остается открытым как в случае низкой ($Tu\sim0$), так и повышенной (Tu>0) турбулентности.

Мощное развитие вычислительной техники привело к явному превалированию численных исследований над экспериментом. причем большинство расчетных работ посвящено моделированию процессов переноса импульса на основе моделей турбулентности. Переход к характеристикам теплового ПС осуществляется традиционным путем с помощью турбулентного числа Прандтля, выбор которого зачастую проводится априори без достаточных физических обоснований.

Поиски соответствующих экспериментальных данных привели в основном к публикациям второй половины прошлого столетия, некоторые из которых будут цитироваться ниже.

В потоках с отрицательным градиентом давления (dP/dx < 0) в виду общей тенденции к ламинаризации течения вследствие ослабления турбулентности наблюдается снижение теплообмена. Например, в [4] показано, что:

$$St_{P0} = St_{00} \left(1 - 165K / St_{00} \right), \tag{3}$$

где $K = \frac{v}{U_e^2} \frac{dU_e}{dx}$ - параметр ускоренности.

В потоках с положительным градиентом давления (dP/dx>0) в виду общей тенденции к отрыву имеет место нарушение аналогии Рейнольдса. Существенный рост гидродинами-ческого ПС приводит к тому, что тепловой ПС оказывется утопленным в нем. Для обобщения опытных данных часто используются критерии, учитывающие не только градиент скорости внешнего потока, но и параметры самого ПС.

Так, при Re^{**} = $U_e \delta^{**} / v = const$ убывание коэффициента трения достигает более 2 раз при значении параметра аэродинамической кривизны $f = \frac{\delta^{**}}{U_e} \frac{dU_e}{dx} = -3.10^{-3}$ и

описывается линейной зависимостью [5]:

$$C_{fP0} / C_{f00} = 1 + 177 f .$$
(4)

Фактор аналогии Рейнольдса часто связывается с параметром градиентности β . Например, в [6] показано, что:

$$\frac{St_{P0}}{C_{fP0}/2} = \Pr^{-0.57} (1 + \beta^{0.885}).$$
(5)

Как следует из уравнения (5), фактор аналогии Рейнольдса возрастает ~ в 4.6 раза при $\beta = -f \frac{H}{C_c/2} = 12$, в основном, за счет уменьшения коэффициента трения.

Анализ экспериментальных данных свидетельствует, что использование локальной скорости $U_e = f(x)$ при определении *St* и Re_x в уравнении (2) не позволяет рассчитать локальный теплообмен при dP/dx>0 с достаточной точностью.

В [7] показано, что консервативность закона теплообмена

$$St_{00} = 0.0144 \operatorname{Re}_{T}^{**-0.25}$$
(6)

подтверждается только в том случае, если число Рейнольдса $\operatorname{Re}_{T}^{**} = U_{T}\theta/\nu$ определяется по скорости U_{T} на внешней границе теплового, а не гидродинамического ПС. При использовании скорости внешнего потока U_{e} коэффициенты теплоотдачи имеют более низкие значения, чем рассчитанные по уравнению (6).

В [8] предпринята попытка универсализации данных по теплообмену в потоках с умеренными как положительными, так и отрицательными градиентами давления. При Re_x = const работоспособной оказывается зависимость

$$St_{P0} = St_{00} \left(1 + P\right)^{-0.212},\tag{7}$$

в которую входит параметр давления

$$P = \frac{x}{U_e} \frac{dU_e}{dx}.$$
(8)

Нетрудно показать, что при степенном законе изменения скорости внешнего потока

$$U_e / U_0 = x^m \tag{9}$$

параметр *P* сохраняется постоянным на всей протяженности исследуемой поверхности, т.е. соблюдается условие

$$P = m = const. \tag{10}$$

В виду ограниченности информации по теплообмену в турбулизированных потоках при наличии продольного градиента давления, нами были продолжены экспериментальные исследования в этом направлении. Ниже дан сравнительный анализ и проведено обобщение результатов двух серий экспериментов по теплообмену в турбулентном ПС при dP/dx=0 и dP/dx>0 в случае Tu>0.

2. Краткое описание установки и техники измерений

Эксперименты проводились на плоской пластине длиною 800 мм, установленной в аэродинамической трубе T-5 сечением 120х120 мм² по общепринятой в аналогичных исследованиях методике [1], основанной на сочетании техники термоанемометрии и электрокалориметрии. Пластина имела скругленную входную кромку и необогреваемый участок протяженностью 30 мм. Отсчет текущей координаты *х* проводился по длине пластины от начала обогрева. При *x*=0 скорость потока составляла $U_0 \sim 10$ м/с. Опыты были проведены в диапазоне Re_x = $U_0 x / v = (6-430).10^3$

Турбулентность генерировалась перфорированной 20-ью отверстиями шайбой, установленной перед входным конфузором. Продольный положительный градиент давления создавался углом раскрытия верхней крышки рабочего участка на угол 6^0 при x=0-340 мм и на угол 12^0 на остальной протяженности пластины. Температура поверхности пластины измерялась 99-ью термопарами, граничные условия были $q_w \sim const$.

3. Результаты экспериментального исследования

3.1. Характеристика внешнего потока

Изменение турбулентности внешнего потока оценивалось по продольной компоненте пульсаций скорости u', вырождение энергии которой описывалось в традиционной форме:

$$\frac{1}{Tu^2} = \frac{U_0^2}{\overline{u'_e^2}} = A(x+x')^m,$$
(11)

где A=240, m=1.4, x'=0.4 м. Напомним, что U_0 - скорость внешнего потока при x=0. Таким образом, уравнение (11) позволяет оценить абсолютные значения кинетической энергии пульсаций, отнесенные к начальной скорости.

Как видно из рис.1, по длине пластины степень турбулентности, определенная как $Tu = u'_e/U_0$, убывала от 12.2 % до 6% при *x*=0 и 0.71 м соответственно.

Рис.1. Затухание внешней турбулентности: 1 - опытные точки; 2 - расчет по уравнению (11).

Распределение во внешнем потоке скорости $U_e/U_0 = f(x)$ свидетельствует о том, что оно не следует степенному закону (9). Этот факт, в свою очередь, приводит к тому, по длине пластины параметр давления P изменяется, а не сохраняется постоянным. Как показывают опытные данные, представленные на рис.2, по характеру изменения P можно выделить три зоны:

- в первой из них при x < 0.075 м течение является безградиентным (P=0);

- во второй зоне при *x*=0.075-0.34 наблюдается умеренное изменение *P* от 0 до -0.3;

- в третьей зоне при *x*=0.34-0.71 м имеет место существенное изменение *P* от -0.3 до -0.78.

Распределения $U_e/U_0 = f(x)$ и P = f(x) полностью соответствуют конфигурации верхней крышки рабочего участка и отражают изменение угла ее наклона по длине рабочего участка.

Рис.2. Распределение скорости и параметра давления во внешнем потоке: $1 - U_e/U_0$; 2 - P.

3.2. Особенности структуры динамического и и теплового пограничных слоев

Турбулизация потока и положительный градиент давления вызывают существенные изменения как интегральных характеристик ПС (рис.3), так и его внутренней структуры (рис.4).

Оба фактора однонаправленно влияют только на рост характерных толщин ПС. Так, при Tu=7% и dP/dx=0 в сечении x=0.465 м толщины динамического ПС и потери импульса были выше ~ в 1.9 и 1.15 раза, чем при Tu=0. При этом тепловой ПС был толще гидродинамического, а отношение всех толщин сохранялось практически постоянным и соответствовало $\delta^{**}/\theta=0.87$.

При *Tu*=6.3% и dP/dx>0 в сечении *x*=0.625 м толщины динамического ПС и потери импульса были выше ~ в 3.5 и 4.7 раза, чем при при *Tu*=0 и dP/dx=0. Тепловой ПС оказался полностью утопленным в гидродинамическом (δ^{**}/θ =3.56).

Рис.4. Пульсации скорости (1, 3) и температуры (2, 4): 1, 2 – опытные данные при dP/dx > 0; 3, 4 – то же при dP/dx = 0.

Оба фактора разнонаправленно влияют на другие интегральные характеристки ПС. При существенном росте Tu при dP/dx=0 значения форпараметров уменьшаются $(H=H_T=1.2)$, тогда как при dP/dx>0 они, наоборот, возрастают $(H=H_T=1.8)$.

Как видно из рис.3 (точки 7 и 8), при dP/dx=0 и Tu>0 в ПС существует область действия логарифмических законов, в которой распределение скорости и температуры определяется по известным зависимостям (см., напр., [1], [2]:

$$u^{+} = 2.5 \ln y^{+} + 5.1, \tag{12}$$

$$\theta^+ = 2.12 \ln y^+ + 3.5, \tag{13}$$

где $u^+ = U/u^*$, $\theta^+ = (t_w - t)/t^*$, $y^+ = yu^*/v$.

Основные изменения претерпевает внешняя часть ПС, в которой становятся отрицательными значения параметров следа: в динамическом слое Π =-0.28 и в тепловом слое Π_T =-0.44.

При dP/dx>0 и Tu>0 (рис.3, точки 5 и 6) в динамическом ПС область действия логарифмического закона сохраняется, однако параметр следа становится положительным: П=1.8. При этом профиль температуры полностью отклоняется от уравнения (13), что связано с существенным увеличением турбулентного числа Прандтля, которое по предварительной оценке достигает ~ 2.3.

Указанные изменения (рис.4) сопровождаются появлением второго мощного максимума пульсаций скорости вблизи внешней границы ПС, тогда как в распределениях температурных пульсаций явные изменения не наблюдаются. Высокие коэффициенты корреляции пульсаций температуры и скорости (порядка 0.85) имеют место при $y^+ \sim 13-14$ в области первого максимума пульсаций скорости, что характерно также и для турбулентного ПС при dP/dx=0.

3.3. Локальный теплообмен

Полученные в настоящем исследовании данные подтверждают рост коэффициентов теплоотдачи при Tu>0 и dP/dx=0 на ~28 и 16% в указанном выше диапазоне Re, за

счет убывания *Tu* по длине пластины (линия 2 на рис.5). При dP/dx>0 и *Tu*>0 также наблюдается ошутимый рост теплоотдачи, достигающий ~18 % при *P*=–0.78 (отвал опытных точек от линии 2 при x > 0,34 м с ростом dP/dx). При Re_x=2.3.10⁵ суммарная интенсификация теплообмена за счет влияния обоих факторов достигает ~ 36%.

Рис.5. Изменение локальных коэффициентов теплоотдачи по длине пластины: 1 и 2 –расчет по уравнениям (2) и (1); 3 –опытные данные при Tu>0 и dP/dx>0.

Механизм интенсификации теплообмена при dP/dx>0 связан, по нашему мнению, с усилением локальной турбулентности вблизи внешней границы динамического ПС. Следует отметить, что в рамках настоящего исследования не представляется возможным связать это явление с продольным градиентом давления. Поэтому для разделения влияния *Tu* и dP/dx при обобщении опытных данных использовалась комбинация зависимости (1) с модифицированной зависимостью (7):

$$St_{PT} = St_{00} (1 + 3Tu - 6Tu^2) (1 + P)^{-n},$$
(14)

в которой в первом приближении

$$n = 1.73Tu - 0.212. \tag{15}$$

Использование зависимостей (14) и (15) позволило с погрешностью до 3% описать полученные экспериментальные данные.

Уравнение (15) подтверждает нелинейный характер взаимодействия возмущающих эффектов различной природы (в данном случае внешней турбулентности и градиента давления). Наличие турбулизации потока ослабляет влияние продольного положительного градиента давления на теплообмен, что имеет место в проточной части теплоэнергетического оборудования.

4. Заключение

Эмпирические методы расчета не требуют таких больших затрат труда и времени, как численное моделирование, но позволяют оценить реальный ход сложного процесса переноса. Они могут быть успешно использованы в качестве экспресс-метода, предшествующего численному моделированию, что позволит не только избежать физических казусов, но и при необходимости ввести дополнительные данные для улучшения использованных моделей.

Полученные на основе экспериментальных данных уравнения подобия (14) и (15) позволяют провести расчеты локального теплообмена в турбулизированном потоке с положительным градиентом давления и оценить интенсификацию теплообмена под влиянием каждого из исследованных факторов.

Условные обозначения

C_f – коэффициент трения;

q – тепловой поток, Bт/м²;

Ти – степень турбулентности, %;

t, t' – температура, пульсация температуры, ⁰С;

 Δt , t^* – температурный напор, динамическая температура, ⁰C;

U, *u*^{*}, *u*′ – скорость, скорость трения, продольная пульсация, м/с;

х, *у* – продольная и нормальная координаты, м;

 $\boldsymbol{\delta}^{**}, \, \boldsymbol{\theta} \, -$ толщина потери импульса или энтальпии, м.

Индексы:

e – внешнее течение; 0 – Tu=0; dP/dx=0; x=0; P - dP/dx>0; T - Tu>0, тепловой w – стенка.

Литература

- [1] Дыбан Е.П., Эпик Э.Я. Тепломассообмен и гидродинамика турбулизированных потоков. -Киев: Наукова думка, 1985. 296 с.
- [2] Barret M.J., Holligsworth D.K. Heat transfer in turbulent boundary layer subjected by free-stream turbulence // Transactions of ASME.- 2003.- Vol.125. P.232-240.
- [3] Себиси Т., Брэдшоу П, Конвективный теплообмен. М.: Мир, 1985.- 590 с.
- [4] Кейс В.М. Конвективный тепло- и массообмен. М.:Энергия, 1972.- 446 с.
- [5] Кашинский О.Н. Поверхностное трение в турбулентном пограничном слое с положительным градиентом давления // Известия АН СССР.- 1975. -№3. С.1-20.
- [6] Дыбан Е.П., Эпик Э.Я. Тепловой пограничный слой и теплообмен в турбулизированных потоках с продольным градиентом давления // Промтеплотехника.- 1989.-Т.11, №6. - С.40-49.
- [7] Леонтьев А.И., Шишов Е.В., Белов В.М., Афанасьев В.Н. Средние и пульсационные характеристики теплового турбулентного пограничного слоя и теплообмен в диффузорной части // Тепломассообмен-У.- Минск: ИТМО АН БССР – ИФТПЭ АН Лит. ССР,1976.- Т.1,ч.1.- С.77-86.
- [8] Mohanty A., Prasad B. Experimental study of heat transfer from pressure gradient surfaces// Experimental Thermal and Fluid Science. 1991.- Vol. 4. P.44-55.