ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ ТЕЧЕНИЯ И ТЕПЛООБМЕНА ПРИ ДОЗВУКОВОМ СТРУЙНОМ ОБТЕКАНИИ ГЕОМЕТРИЧЕСКИ СЛОЖНОЙ ПРЕГРАДЫ.

В.И. Терехов, С.В. Калинина, К.А. Шаров

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск, Россия

1. Введение.

Изменение геометрии теплообменных поверхностей представляется эффективным способом управления теплоотдачей при их струйном охлаждении. Действительно, как показано в монографиях [1,2], тепловые потоки от обтекаемого струей тела, особенно в окрестности лобовой точки струи, определяются местным градиентом давления, который в значительной мере определяется формой тела. Однако такая сравнительно простая ситуация реализуется не всегда. Например, на преградах в форме углублений за счет вихреобразования и локальных отрывов потока может возникать сложная неустойчивая структура течения с крупномасштабными низкочастотными колебаниями, эффект Коанда и т.д. [3]. При этом проблема предсказания теплообмена для этих условий остается открытой.

В настоящей работе изучается структура течения и теплообмен при охлаждении осесимметричной струей преграды в форме сферической каверны. Лунки привлекают внимание исследователей тем, что при продольном обтекании проявили себя как генераторы необычных, автоколебательных режимов и эффективные интенсификаторы теплоотдачи [4 - 7]. Весьма эффективным оказалось также использование луночных рельефов для охлаждения внутренних каналов лопаток газовых турбин с помощью системы импактных струй [8, 9].

В последние годы внимание многих исследователей обращено на образование, устойчивость и роль крупномасштабных вихрей (когерентных структур) в процессах тепло - массообмена в импактных струях [10, 11]. Наличие организованных структур в струе создает дополнительную перспективу управления теплообменом от обтекаемой преграды. Как показывает анализ имеющихся публикаций, в частности работы [12], такое управление возможно с помощью наложенного извне периодического (по времени) возмущения давления, соответствующего собственным частотам струи. В задачу данной работы наряду с изучением средних по времени характеристик течения и теплообмена, входило изучение генерируемых течением пульсаций (в том числе их частотного спектра) при изменении формы поверхности преграды.

Экспериментальные исследования взаимодействия импактных струй с криволинейными преградами немногочисленны. Они представлены публикациями [13 - 19]. Наиболее близкими к настоящей работе являются экспериментальные исследования [18, 19].

В работе [18] полусферическое углубление обдувалось струей воздуха по направлению вертикальной оси каверны. Диаметр струи на выходе из сопла был существенно меньше диаметра углубления $D_k/d_c=16\div50$. Согласно полученным данным, теплоотдача в точке торможения струи при фиксированном числе Рейнольдса зависит от расстояния между соплом и преградой. По сравнению с обтеканием плоской поверхности при отношении $D_k/d_c=16$ теплоотдача в сферической каверне снижается. При больших отношениях диаметров каверны и сопла $D_k/d_c=50$ теплообмен в лобовой точке выше чем на плоской преграде, а показатель степени в зависимости числа Нуссельта от числа Рейнольдса увеличивается от n=0.5 для плоской преграды до n=0.66 для полусферы.

Авторы [19] подробно исследовали теплоотдачу в полусферической каверне при вариации числа Рейнольдса (10⁴ ÷ 5*10⁴) и отношениях диаметров каверны и сопла

 $D_{\kappa}/d_{c}=11\div30$. Согласно полученным ими данным, локальный теплообмен уменьшается во всем исследованном диапазоне параметров Re и D_{κ}/d_{c} .

Следует отметить, что имеющиеся публикации содержат в основном сведения о средних характеристиках обтекания и теплообмена и не дают полного представления о сложных газодинамических и тепловых процессах взаимодействия импактных струй со сферическими углублениями.

В настоящих исследованиях, являющихся продолжением цикла экспериментов [20, 21], изучалось взаимодействие струи со сферическими кавернами. Предварительные опыты на плоской преграде позволили непосредственно выявить влияние изменения геометрии охлаждаемой поверхности на течение и теплообмен. Эксперименты включали измерение полей скоростей с помощью системы цифровой трассерной визуализации (PIV), а также исследование локальной теплоотдачи от обтекаемой поверхности с использованием миниатюрных градиентных датчиков тепловых потоков ГДТП [22], позволяющих измерять локальные средние по времени тепловые потоки и их пульсации. В качестве варьируемых параметров были число Рейнольдса, расстояние от среза сопла до преграды, глубина каверны.

2. Описание экспериментальной установки и методов измерений.

Эксперименты были проведены на установке, схематично изображенной на рис. 1. Струя создается с помощью дозвукового сопла диаметром $d_c = 8,9$ мм. Степень поджатия потока в сопле составляет ≈ 8 , контуры сопла плавно спрофилированы, поэтому распределение скорости его выходном сечении практически равномерное, а интенсивность турбулентности составляет Tu $\cong 0,3\%$. Средняя скорость истечения U₀ изменялась в пределах от 20 до 100 м/с; соответствующее значение числа Рейнольдса Re=U₀d_c/v=10⁴÷6·10⁴. Струя натекает на преграду под прямым углом, расстояние от сопла до преграды S варьируется от 0 до 10d_c, температура воздуха во всех экспериментах близка к комнатной.

Схема экспериментального стенда. 1 – преграда; 2 – воздушная магистраль; 3 – регулирующий вентиль; 4 - сопло; 5 – датчики тепловых потоков.

Первый этап работы был посвящен изучению полей скорости. Преграда в этих экспериментах представляла собой плексигласовый диск диаметром 70 мм в центре которого имеется сферическое углубление диаметром D_{κ} =46 мм и варьируемой глубиной Δ = 6, 12 и 23 мм (Δ/D_{κ} =0.12, 0.26 и 0.5).

С помощью метода PIV исследовались поля скорости в области между соплом и преградой. Использованная в экспериментах система PIV состояла из двух твёрдотельных импульсных АИГ:Nd³⁺ лазеров, мощностью 50 мДж, длиной волны 532.05 нм,

3

длительностью импульса 5 нс. Цифровые камеры имеют матрицы 1000×1200 пикселей с высокой светочувствительностью. Измерительный комплекс оснащен синхронизатором импульсов и компьютером с АЦП для сбора и обработки данных. Засев потока трассерами осуществлялся с помощью генератора аэрозоля. В качестве трассеров использовались микрочастицы 50 процентной водоглицериновой смеси с добавлением раствора сухого молока.

Для исследований теплообмена рабочий участок диаметром 190 мм и толщиной 50 мм изготавливался из меди. Требуемый температурный перепад между струей и преградой, составлявший в большинстве опытов около 40°, достигался с помощью расположенного нагревателя. преградой электрического Выбор В качестве материала под высокотеплопроводной меди обеспечивал выполнение граничного условия на преграде Т_{ст}≃const. Температура обтекаемой стенки и температура потока измерялась хромелькопелевыми термопарами. Измерения локальных тепловых потоков проводились с помощью наклеенных на преграду градиентных датчиков теплового потока ГДТП [22]. Датчики имели следующие характеристики: чувствительность - 10÷20 мВ/Вт, размер в плане не более 2.5х2.5 мм (что существенно меньше характерных размеров исследуемого течения), и толщиной ≈ 0.2 мм. С их помощью были получены массивы мгновенных значений плотностей тепловых потоков и по ним рассчитаны средние по времени величины тепловых потоков, а также их пульсации и спектры пульсаций. Количество реализаций в пределах одного измерения составляло 10⁴ при времени измерения 10-90 сек. Через специально разработанный, многоканальный модуль сигналы от термопар и датчиков усиливались и поступали для последующей обработки в компьютер.

3. Результаты экспериментальных исследований и их обсуждение.

3.1. Результаты PIV измерений.

Проведенные методом PIV измерения и визуальные наблюдения показали сильное влияние геометрии преграды на формирующееся между ней и соплом течение - рис. 2.

Если преграда плоская, то поток разворачивается на 90° в районе лобовой точки и равномерно растекается по всей поверхности. Поле средней скорости показало наличие слоя смешения в струе и небольших отрывных зон в окрестности лобовой точки.

Если каверна мелкая, $\Delta/D_{\kappa}=0,12$, то картина ее обтекания качественно совпадает с обтеканием плоской преграды. При обтекании лунок глубиной $\Delta/D_{\kappa}=0,26$ или 0,5 поток разворачивается в углублении на 180°, т.е. выходит из него навстречу импактной струе. Этот встречный, вытекающий из лунки по ее периферии кольцевой поток воздуха сильно неустойчив, характеризуется крупномасштабными колебаниями и взаимодействует с исходной струей. В области за лункой присоединения потока к поверхности преграды не происходит.

Осредненная картина течения между соплом и преградой. Re=1.2 10⁴.

Поле средних скоростей, полученное в результате статистической обработки массива мгновенных полей течения, показало наличие структуры в виде крупного, тесно связанного с углублением тороидального вихря - рис. 3. Положение и размер области вихревого движения зависит от параметров каверны. Внешняя граница вихря в радиальном направлении практически совпадает с границей углубления. В направлении нормали к преграде размер и положение области вихревого движения зависит от параметра глубины Δ/D_{κ} . При глубине каверны равной $\Delta/D_{\kappa}=0.5$ эпицентр вихря расположен внутри лунки, при глубине $\Delta/D_{\kappa}=0.12$ - примерно в середине между соплом и преградой.

На рисунках 3 и 4 показаны распределения скорости между соплом и преградой. Волнообразное изменение продольной скорости на рис. 3 соответствует показанным на рис. 2 вихрям. Радиальные скорости везде малы, практически сопоставимы с погрешностью метода измерений. Сечения $y/d_c=0.5$ и 1.5 над лункой глубиной $\Delta/D_{\kappa}=0.26$ соответствуют периферии вихря. Радиальная скорость здесь совпадает со скоростью вращения вихря и составляет $\cong 0.1 U_0 -$ рис. 4.

Рис.3. Распределения продольной составляющей скорости в различных сечениях между соплом и лункой (а) и в различных лунках (б).

Рис.4. Распределения радиальной скорости в различных сечениях между соплом и преградой.

3.2. Теплообмен.

Основные измерения теплообмена проводились для двух предельных случаев: на плоской преграде ($\Delta/D_{\rm k} = 0$) и на преграде с самой глубокой - полусферической лункой ($\Delta/D_{\rm k}=0.5$). Локальные значения коэффициента теплоотдачи определялись по измеренной плотности теплового потока q_i , уменьшенной на величину плотности теплового потока за счет свободной конвекции и лучистого теплообмена Δq_i , и разности температуры поверхности и воздуха в устье струи:

$$\alpha_i = (q_i - \Delta q_i)/(T_{cT} - T_0)$$

Величина поправки Δq_i определялась экспериментально, путем измерений теплообмена на модели при отсутствии струйного потока, и составляла 5 - 7% от величины плотности теплового потока в лобовой точке.

Сравнение радиального распределения коэффициента теплоотдачи на плоской преграде и в полусферической лунке приводится на рис. 5. Как видно, локальная интенсивность теплоотдачи от криволинейной преграды практически в два раза ниже, чем от плоской. В то же время расчеты показали, что интегральное значение теплоотдачи от соответствующего лунке сегмента поверхности такое же, как и на плоской стенке. Таким образом, ослабление теплообмена полностью компенсируется приростом теплообменной поверхности.

Рис. 5 Радиальное распределение коэффициента теплоотдачи. 1 - плоская преграда, S/d_c =2. 2, 3, 4, 5- преграда с лункой: 2 - S/d_c=0; 3 - 2; 4 - 6; 5 - 10.

Как и следовало ожидать, с увеличением расстояния от сопла до преграды (с ростом параметра S/d_c) теплоотдача в каверне снижается. В то же время за пределами лунки, при всех рассмотренных условиях обтекания, теплообмен практически отсутствует. Последнее полностью соответствует результатам визуализации, показавшим, что поток воздуха, поступающий в каверну в окрестности лобовой точки, вытекает из нее в направлении против этого потока, не попадая на стенку за каверной. Соответственно, сформированное таким образом течение сказывалось на распределении коэффициентов теплоотдачи.

Зависимость интенсивности теплообмена в лобовой точке преграды от ее геометрии и числа Рейнольдса демонстрирует рис. 6. Для удобства сопоставления с результатами

других авторов при описании расстояния от сопла до преграды вместо переменной S использована переменная L=S+ Δ , включающая глубину каверны.

Опытные результаты для плоской поверхности хорошо совпадают с аналогичными результатами [23] и описываются эмпирической формулой:

$$Nu_0 = 1.24 Pr^{0.33} Re^{0.5} (S/d_c)^{-0.11}$$
(1)

Данные настоящей работы для полусферической каверны располагаются существенно ниже, чем на плоской стенке, но угол наклона корреляционной зависимости $Nu_0 \approx Re^n$ (обобщающая линия (7)) сохраняется таким же (n=0.5), что говорит о подобии механизмов теплообмена в критической точке на плоскости и в лунке. Уменьшение теплообмена свидетельствует о трудности проникновения струи вглубь каверны.

Теплообмен в лобовой точке полусферической лунки сравнивается на рис. 6 с результатами измерений [18] и [19]. Отличительной особенностью условий экспериментов обеих указанных работ является большое значение отношения диаметров каверны и сопла.

Рис. 6. Теплоотдача в лобовой точке плоской преграды и лунки. 1, 2 - плоская преграда, L/d_c=6: 1- эксп. авторов, 2 - эксп. [23]. 3, 4, 5, 6 - эксп. авторов, D_к/d_c=5.4, Δ /D_к=0.5: 3 - L/d_c=2.7; 4- 4.7; 5 -6.7; 6 - 8.7. 8. 9 - эксп. [18], L/d_c=6, Δ /D_к=0.5: 8 - D_к/d_c=44; 9 - 16, 10, 11 - эксп.[19]: L/d_c=6, Δ /D_к=0.5, 10 - D_к/d_c=11.2; 11 - D_κ/d_c=29.4

Данные [18] на рис. 6 представлены линиями 8 и 9 для двух крайних значений $D_k/d_c=44$ и 16 соответственно. При малом диаметре сопла и соответственно большой величине $D_k/d_c=44$, интенсивность теплообмена в лобовой точке превышает значение на плоской поверхности, увеличивается при этом и показатель степени при числе Рейнольдса:

$$Nu_0 = 0.798 \text{ Re}^{0.604} \text{ Pr}^{0.4} (\text{S/d}_c)^{-0.22}$$
(2)

При уменьшении отношения D_{κ}/d_c до 16 опытная зависимость Nu от Re снижается в направлении к результатам настоящей работы, где соотношение между диаметром

каверны и сопла было еще меньшим, D_к/d_c=5.4, причем теплоотдача становится меньше, чем на плоской преграде.

Данные измерений [19] представлены на рис. 6 линиями 10 и 11. Им соответствует отношение диаметров лунки и сопла $D_{\kappa}/d_c=11.2 \div 29.41$. Согласно данным [19], с ростом параметра D_{κ}/d_c теплоотдача в лобовой точке снижается, что противоположно результатам Hrycak [18] и плохо согласуется с результатами настоящей работы.

Все обнаруженные особенности распределений коэффициентов теплоотдачи свидетельствуют о чрезвычайно сложном и неоднозначном механизме теплоотдачи при струйном обтекании углублений сферической формы, требующем дальнейших исследований.

3.3. Пульсации теплового потока.

На основе полученных массивов мгновенных значений плотности теплового потока была определена интенсивность пульсаций теплового потока и проанализирован их спектральный состав.

Сопоставление временных разверток сигналов датчиков, нормированных на величину теплового потока в лобовой точке q₀, показало, что они существенно различаются на плоской преграде и в лунке, а кроме того, они существенно различны внутри лунки (r=17.3 мм) и за лункой (r=33 мм) – рис. 7.

Рис. 7. Сравнение временных разверток мгновенных значений плотности теплового потока.

Из рис. 7а видно, что в полусферическом углублении относительные пульсации теплового потока заметно выше, чем на плоской стенке. Повышение в значительной степени объясняется уменьшением средней теплоотдачи и развитием вихрей Тейлора – Гертлера.

Иная ситуация наблюдается, когда сравниваются сигналы датчиков, размещенных внутри лунки и за ее пределами, рис. 7а и 76. Сигнал датчика, размещенного за лункой, как бы промодулирован крупномасштабными низкочастотными колебаниями. Появление новых крупномасштабных пульсаций теплового потока за лункой хорошо коррелирует с результатами PIV исследований, показавшими, что в кольцевом потоке воздуха, вытекающем из лунки по ее периферии, развивается вторичная неустойчивость.

На рис. 8 сравниваются радиальные распределения среднеквадратичнх пульсаций коэффициента теплоотдачи на преграде плоской формы и с лункой. Аналогично рис. 7, для нормировки пульсаций использовано значение коэффициента теплоотдачи в лобовой точке - α_0 . На всей поверхности плоской преграды относительные пульсации коэффициента теплоотдачи изменяются незначительно и находятся в пределах 1% от величины α_0 . Это очень малые величины, если их сопоставлять с аналогичными

относительными пульсациями касательного напряжения $\sqrt{{\tau'}^2} / \tau_0$ [11]. Возможная причина такого различия состоит в том, что касательное напряжение в лобовой точке минимально, а тепловой поток, наоборот, максимален.

Рис. 8. Радиальное распределение пульсаций коэффициента теплоотдачи на плоской преграде и в лунке. Re= 2.8 10^4 . 1, 2, 3 – преграда с лункой, Δ/D_{κ} ==0.5: 1- S/d_c=0; 2 – 6; 3 – 10. 4 – плоская преграда, S/d_c=2.

Интенсивность среднеквадратичных пульсаций коэффициента теплоотдачи на преграде с лункой везде больше, чем на плоской стенке, она слабо изменяется за лункой, а при движении от периферии каверны к лобовой точке увеличивается (рис. 8). При изменении числа Рейнольдса характер распределений пульсаций на поверхности сферической каверны сохранялся неизменным.

Спектральный состав пульсаций теплового потока на плоской преграде демонстрирует рис. 9.

Рис. 9 Амплитудный спектр пульсаций плотности теплового потока на плоской преграде. Re= 12000. S/d_c=2.

Полученные спектры сопоставлялись с результатами работ [11] и [12]. При всех условиях максимум пульсаций приходится на область низких частот. Характер спектрального распределения изменяется при движении в радиальном направлении. Подобно результатам [12], представленным на рис. 9 пунктирной линией, на расстоянии r/d_c=0.65 от лобовой точки спектральное распределение имеет еще один максимум,

связанный с прохождением вихрей, развивающихся в слое смешения струи. Как видно из рис. 9, в условиях проведенных экспериментов процесс прохождения вихрей был достаточно высокочастотным, соответствующая ему частота превышала 1кГц. Определенное по указанному максимуму число Струхаля составило 0.86, что близко к результатам исследований других авторов, в том числе к результатам [11, 12].

Рис. 10. Сравнение спектров мощности относительных пульсаций в лобовой точке лунки и за лункой.

Типичный спектр пульсаций плотности теплового потока, нормированных на местное среднее значение в лобовой точке лунки и за лункой демонстрируется на Рис. 10. С учетом предварительного анализа рис. 7 основное внимание уделено низким частотам. По сравнению с лобовой точкой спектральное распределение за лункой сужается, демонстрируя приоритетный вклад низкочастотных колебаний в полную энергию колебаний.

4. Выводы

1. Локальная теплоотдача на стенке каверны существенно зависит от соотношения диаметров каверны и сопла. Причем у различных авторов тенденция поведения коэффициента теплоотдачи в зависимости от соотношения диаметров сопла и лунки имеет противоположный характер. Указанная особенность требует дальнейшего изучения.

2. При обтекании глубоких лунок обнаружена вторичная неустойчивость течения, которая приводит к крупномасштабным низкочастотным пульсациям теплового потока за лункой.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 07-08-00025).

Литература

- [1] Юдаев Б.Н., Михайлов М.С., Савин В.К. Теплообмен при взаимодействии струй с преградами. М.,1977. 247 с.
- [2] Дыбан Е. П., Мазур А.И. Конвективный теплообмен при струйном обтекании тел. Киев, 1982. 304 с.
- [3] Dyban E.P., Mazur A.I., and Epik E.Ya. Flat air jet outflow into a blind pass. J. of Eng. Physics. 1971. V. 20, № 6. Pp. 1020-1026.
- [4] Терехов В.И., Калинина С.В. Структура течения и теплообмен при обтекании единичной сферической каверны. Состояние вопроса и проблемы (обзор). Теплофизика и аэромеханика. 2002. Т.9, № 4. С. 497-520.

- [5] Afanasyev V.N., Chudnovsky Y.P., Leontiev A.I., Roganov P.S. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate. Experimental Thermal and Fluid Science. 1993. Vol. 7. Pp. 1-8.
- [6] Terekhov V.I., Kalinina S.V., Mshvidobadze Yu.M. Heat-transfer coefficient and aerodynamic resistance on a surface with a single dimple. Enhanced Heat Transfer. 1997. Vol. 4. Pp. 131-145.
- [7] Mahmood G.I., Ligrani P.M. Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. Int. J. Heat Mass Transfer. 2002. Vol. 45. Pp. 2011-2020.
- [8] Kanokjaruvijit K., Martinez-Botas R. F. Parametric effects on heat transfer of impingement on dimpled surface. J. of Turbomashinery of ASME. 2005. Vol. 127. Pp. 287-296.
- [9] Ekkad S.V., Kontrovitz D. Jet impingement heat transfer on dimpled target surfaces. Int. J. of Heat and Fluid Flow. 2002. Vol. 23. Pp. 22-28.
- [10] Ho Ch.-M., Nosseir N. S. Large coherent structures in an impinging jet. Turbulent shear flows 2. Papers from Second International Symposium on Turbulent Shear Flows. London, July 1979. Berlin, 1980. Pp. 297–304.
- [11] Alekseenko S., Bilsky A., Heinz O., Ilyushin B., Markovich D. Near wall characteristics of impinging turbulent jet. Proc. of the 4- th International Symposium on Turbulence, Heat and Mass Transfer. Antalya, Turkey, 12 - 17 Okt. 2003. Pp. 235 -241.
- [12] Tianshu L., Sullivan J. P. Heat transfer and flow structures in an excited circular impinging jet // Int. J. Heat Mass Transfer. 1996. Vol. 39, № 17. Pp. 3695-3706.
- [13] Кох Д., Хартнетт Д. Измерение распределения давления и местной теплопередачи при обтекании вогнутых полусфер. РТиК. 1961. Т. 31, № 1. С. 86-91.
- [14] Kornblum Y., Goldstein R. J. Jet impingement on semicircular concave and convex surface. Part one: recovery factor. Proc. Int. Symp. on the Physics of Heat Transfer in Boiling and Condensation. Moscow, 1997. Pp. 597-602.
- [15] Kornblum Y., Goldstein R. J. Jet impingement on semicircular concave and convex surface. Part two: heat transfer. Proc. Int. Symp. on the Physics of Heat Transfer in Boiling and Condensation. Moscow, 1997. Pp. 603-608.
- [16] Chan T.L, Zhou Y., Liu M.H., Leung C.W. Mean flow and turbulence measurements of the impingement wall jet on a semi-circular convex surface. Experiments in Fluids . 2003. Vol. 34. Pp. 140-149.
- [17] Lee D.H., Chung Y.S., Kim M.G. Turbulent heat transfer from a convex hemispherical surface to a round impinging jet. Int. J. of Heat and Mass Transfer. 1999.Vol.42. Pp. 1147-56.
- [18] Hrycak P. Heat transfer and flow characteristics of jets impinging on a concave hemispherical plate. Proc. 7th Int. Heat Trans. Conf. Munchen Hemisphere Publ. Corp., Wash., N-York, London, 1982. Vol. 3. Pp. 357-362.
- [19] Lee D.H., Chung Y.S., Won S.Y. The effect of concave surface curvature on heat transfer from a fully developed round impinging jet. Int. J. of Heat and Mass Transfer. 1999. Vol. 42. Pp. 2489-2497.
- [20] Терехов В.И., Барсанов В.Л., Калинина С.В., Мшвидобадзе Ю.М. Исследование структуры течения и теплоотдачи при нормальном струйном обтекании геометрически сложной преграды. XXVII Сибирский теплофизический семинар, посвященный 90 летию ак. С.С. Кутателадзе, Москва - Новосибирск, 1 - 5 октября 2004 г. Труды. Новосибирск, ИТ СО РАН. CD-диск: ISBN-5-89017-027-9, № 143.
- [21] Terekhov V.I., Barsanov V.L., Kalinina S.V., and Mshvidobadze Yu.M. Experimental study of flow structure and heat transfer under a jet flow past a spherical-cavity obstacle. J. of Eng. Physics and Thermophysics. 2006. Vol. 79, № 4. Pp. 657-665.
- [22] Сапожников С. З., Митяков В. Ю., Митяков А. В. Градиентные датчики теплового потока. Санкт Петербург, 2003, 170 с.

[23] Gardon R., Cobonque J. Heat Transfer Between a Flat Plate and Jets of Air Impinging on it. In: International Development in Heat Transfer. Proc. Int. Heat Transfer Conference. New York, 1961. Pp. 454–460.