Volume 92, №6
MODEL OF THE DYNAMICS OF A POLYDISPERSE VAPOR–DROPLET MIXTURE WITH GAS-DYNAMICAL FRAGMENTATION OF DROPLETS
A model of the dynamics of a multivelocity multitemperature polydisperse vapor–droplet mixture has been constructed with account for gas-dynamical fragmentation of droplets on surpassing the critical Weber number. Calculations of the dynamics of a vapor–droplet mixture of polydisperse composition on instantaneous insertion of droplets into fl ow have been made. To describe the motion of a carrier medium, the system of Navier–Stokes equations for a compressible heat-conducting gas was used. The dynamics of disperse fractions is described by systems of equations that include continuity equations, as well as momentum and internal energy conservation equations. The equations of motion of the carrier medium and of droplet fractions are written with account for the interphase momentum and energy exchange. To describe the process of gas-dynamical fragmentation, a semiempirical model, well-known from the literature, is applied allowing one to take into account the decrease in the radius, mean density, and volume content of the fractions being split up. Changes in the dispersity and dynamics of the vapor–droplet mixture occurring as a result of the fragmentation of droplets on instantaneous insertion of disperse phase into the fl ow are analyzed
Author: N. A. Tukmakova and A. L. Tukmakov
Keywords: Navier–Stokes equations, equations of motion of a polydisperse vapor–droplet mixture, explicit McCormack scheme, gas-dynamical fragmentation of particles
Page: 1466
N. A. Tukmakova and A. L. Tukmakov .
MODEL OF THE DYNAMICS OF A POLYDISPERSE VAPOR–DROPLET MIXTURE WITH GAS-DYNAMICAL FRAGMENTATION OF DROPLETS //Journal of engineering physics and thermophysics.
. Volume 92, №6. P. 1466 .
Back to list